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/ ABSTRACT

I This paper studies how to identify hidden factors in multivariate time

series process. It is shown that the number of factors must be equal to the - -

rank of both the covariance matrices and the parameter matrices of the

infinite moving average representation of the process. A canonical

transformation is derived which can recover such factors. The method is

illustrated with several examples. SS '~~ 4 (C~4'' 4C

AMS (MO-) Subject Classifications 62M,, 62H25, 60G35
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SIGN IFICANCE AND EXPLANATION .

A central problem in the study of multivariate data is the reduction of

dimensionality. This problem in specially acute in modeling multiple time

series because if the number of series is large, a huge number of parameters

may be needed to obtain an adequate representation of the behavior of the

process. This paper explores ways to reduce the dimensionality of the 9

observed process through the extension of the static factor analysis model to

the dynamic context. It is shown how the number of factors can be identified,

hov the loading matrix can be estimated and how a canonical transformation can a.
be built to recover the factors and to obtain a simpler representation of the

process. The usefulness of this t ry is illustrated with several examples.
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A FACTOR ANALYSIS FOR TIME SERIES

Daniel Pens and George Z. P. Box

INTRODUCTION

A central problem in the study of multivariate observations is the reduction of

dimensionality. In the time domain study of vectors of time aeries, Quenoulli (1957)

suggested how to use the eigenvectors of the parameter matrices of an autoregressive .

process to obtain a simpler interpretation and the system, Box and Tiao, (1977) showed how

to build a canonical transformation of an autoregressive vector process which order the

components from least to most predictable, and Reinsel (1983) presented how to estimate

index variables to simplify the representation of a vector autoregressive time series using

a formulation previously suggested by Sargent and Sims (1977).

brillinger (1981) extended the standard principal component approach to the frequency

domain. Related work is due to Priestley (1981) and Subba Rao (1975). Geveke (1977) and

Geweke and Singleton (1981) discussed a frequency domain version of factor analysis.

Finally, Rannan (1981) has presented methods to estimate the dimension of a linear system.

in this paper a factor analysis of time series in the time domain is proposed. It is

assumed that an observed k-vector of time series Zt could be written as

-t " 11t + St (1.1)

where P is a k x r matrix of unknown parameters, Zt is an unobservable r-dimension

vector process and e is a k-dimensional white noise sequence with full rank covariance

matrix E. This model is of course only relevant either if r < k or if r - k but

re- 0. In the first case a reduction of dimensionality could be achieved without loss of

information. In the second case, r - k, an interesting problem is to find out a linear

transformation of the series that allows a simpler representation of the system. *

*Statistics Department, ZTSII, Universidad Politkcnica de Madrid, Spain.

Sponsored by the United States Army under Contract no. DAAG29-60-C-0041. The first author

acknowledges support from the United States-Spanish Joint Comittee for Educational and
Cultural Affairs.
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In Section 2 the general model (1.1) is analysed and some of its properties are

studied. A canonical transformation can then be introduced to recover the factors. in

Section 3 the one factor model is studied in detail, a,%d in Section 4 a practical

methodology to apply these procedures is developed. Section 5 includes several examples of

the application of the suggested models, and in Section 6 this methodology is compared with

related approaches in the time domain. Finally, Section 7 contains some concluding

remarks.
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2. TOR Gll L UNCOULNE FACTORS NODEL

2.1 Foruulation

Lot Lt be a vector of k time series and at Lt - IA the vector of deviation*

from aome origin ua that will be the mean if the series are stationary. We assme that

these series are generated by r(r 4 k) factors, yt, plus a measurement error tt as

t - liEt + £t(2.1)

where I is a k x r matrix of parameters of rank r and et is a white noise sequence

with full rank coveriance matrix Z . The vector t follows a r-dimensional ARKA

(py,q,) process of the form:

,(2.2)

where

jyS) - - ) - t .... - (p)

()- (q)bql

are matrix polynomials in the backshift operator 3, the i'a and the 10s are r x r

matrices and the roots of the determinantal polynomial jy(S)j are on or outside the unit

circle, whereas those of 10 (D)l are all outside the unit circle. Also, (at) is a
Oy

sequence of vector Gaussian white noise with zero man and covariance matrix Z We shall

assum in this section that the r factors are independent, and all the j and

matrices will be diagonal. However, we will allow contemporaneous dependency in the noise

matrix Ea and assume only that is positive definite. In Bction 4 this model will be

generalized to the case in which the factors have dynamic dependence and the parameter

matrices ty and -L are no longer diagonal. r

The matrix P will be called the factor loadings or factor weights matrix, and its

elements, Pij, represent the weight of the factor j in the observed ith component. If

is any r x r nonsingular matrix, the generating equation could also be written A"

where is the new rectangular matrix of coefficients and - is a linear
6..

transformation of the factors. Multiplying (2.2) by is

-3- "'.4..
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-(B)C C(C Ca

and so, the model for the new set of factors is again an r-dimenuional AN4A (py,qy) model

with parameters

J*(B)- SJ(B)-' ....
V0(S) -OM

(a  I--a-

In general, the restriction that the J and 8 parameter matrices of the components are

diagonal imposes a uniqueness condition. However, if J(D) - _ - 1B and O(B) - , that

is, the factors follow and nonstationary AR(1) with all the roots in the unit circle,

some indeterminacy appears, because whatever the matrix the new factor will be

uncorrelated at all lags. A possibility is to choose S to diagonalize III and I at

the same time. in this way, not only the factors are uncorrelated to all lags and

contemporaneously, but also the columns that transmit their effect to the observed series

are orthogonal.

However, if C is diagonal, that is can be interpreted as a change of scale, the

transformed parameter matrices, **(9) and 0S(B) are always diagonal and J- keeps its

basic features. To remove this source of indeterminacy we assume that the columns of the

P matrix of factor loadings are such that

k

i-i

The objective of the analysis will be to estimate these factor loadings and to build a

canonical transformation to recuperate the hidden factors.

2.2 The Covariance and Correlation Matrices of the Observed Process

Let ua call rk, - 3It l the covariance matrices of the process x_ and L , k:

the covariance matrices for the generating vector Xt. Then:

.r(0) = wrY(O)P + i (2.3)

-4-
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Ls,(k) a i- zk)i' k V 1 (2.4)

and the rank of r(k) for k )o 1 will be equal to the number r of comon factors-

Almo, if the factors are independent for all lags, and the matrix is diagonal, then

all the covariance matrices r (k) will be diagonal and, hencet (1) the matrices L'k
-y

will be symmetric for k ) 1, (2) the columns of I will be eignvectors of Es(k) with

eigenvalues Y1 (k), where Yi(k) are the diagonal elements of l(k)..

The partial autooorrelation matrices will be given by (see Tiao and Box (1981))

, -r()r (1) I. 1

P,(i) - Er (o) - b'(A 'A)b(IA)]-

C[~r () l'( A) l ) 1 1I >

where .-
k'(,) . tr'c - 1)r;(- 2) ... r.(1)]

c .- r(o) r '(2) ... r 't -- 1),

1(0) r'1) ...... '.2)

&M *1 0)

and so, the partial autocorrelation matrices can be written

91-1 1

J.l Jul '. °.

whore 112) _(O) k '(Jt)i Mlt)(j)]
"  and A-llJ.1,) is the (i,j) element of

(1written

9-I
.o -j A)CL () - rut ( - i)Ij (i,j,&)Pr (jg (2.5)

o, it we call v the null a Ae of defined by al the vectors that verify o '

WN

II.,

ow-"if-we call v : the l .spac ...of definedballthe ectors that* .v i er-.e . :
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S.

and if V is a k x (k - r) matrix which columns are a basis for this space v, then

0 0

this shows that (M) the rank of P'(X) is at most r, and (2) the eigenvectors linked to

zero eigenvalues of P'(I) belong to the v space.

As an example, and for further reference, we derive the first partial autocorrelation

matrix assuming that the factors follow an AR(1) process with parameter matrix P

Pci) - r'(i)z (0) -Pr'(")p-(p r()P + E

and using the relations

(le + Pr (y)P.') " - E P( + r ()PEp- '
.-0 ME + r -y wt My

and

=y W'("' (0)

and calling A= = '_P, we obtain

P(1) = P*F(0)(I - A(I + r (0)A) r(0]P' 1 "

now, using the relations (Handerson and Searle (1981))

(I +P)-I - Pq: + P)- I " ! + P) - - "p:'.-1(1I-(IP 1

we obtain

Em - & -r ( , = . (2.6)

The matrix AF (0) can be considered as a measure of the ratio between the signal

introduced by the factors in the observed series and the noise due to C-t" For instance,

in the one factor case, assuming 0.1, then

Ar (0) = 'p- -'-)

2

£ I

where Pi are the components of the vector P and y (0) the variance of the factor.

The above expression shows that AF (0) compares the variance of every component of z .

22
due to the factor, p y(0), with the variance introduced by the error, a

-6-
S
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In the general cme, it this matrix to much greater than I (that li, the signal-

noise ratio is larger than one) then

+ ,mC)) ye()

and if we multiply (2.6) by g

and so, approximtely, P(1) has eigenvalues equal to the diagonal elements of # with

corresponding elgenveators the colums of P.

2.3 he Model for the served Process and Xts Parameters

The propertles w have studied for the covariance and correlation matrices Inpos r "
'. p..

strong restriction on the type of model the observed. g vector of series can followand

to the characteristics of its parameter values.

Theoram 1. $o,.poee 1 " + St where r, is a r-dimsnsional (py,q) process,

In a k xt r matrix (k ) of rank r and c is a k-dimsional white noise

equene with covariance matrix T. Then, g follow a k-dimensLonal AM (pz,qx)

with ps - py, qx " max(pyqy).

proof.

The covariance matrices of an A (p,q) model satisfy the equation (see T1ao and

Box (1961))

l. ry(,),wx, - )- y auvI,, - 0,...,.

--4C - - 1) F.)-

and 10 i -. t is assumed that (a) if p < q# (p )- () -" 0, and (b) if

q < p, j(q + 1) - 6(m) - Premultiplying the system of equations by g and

pot7ultiplying by I's

-7-
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+& 01-0 4,

1-1

-1 a

-1 -IL

L3,lI) - X EIy(i)*;(1 - D1R - ): i*(C)1 f.(i; • I1Z. I - 1 ....n ( 2.7)

jai

For I > m, equating the precedent result to the general expression for the

covariances of an Al4a model

J i ,11- "-::')

..;:2-1 i-i "''

and so, using (2.4), Pz py and:

p. !1 W)' f Kt'(k) k 1 (2.8)

and substituting (2.8) into (2.7)

-1 "
r- 1 - ) yjJ4;(a)yi-' + 1- 0 (2.9)as-

.2 Ja-= J. a",.

rTl -i jlgl (t -J) I > I 1.1 .
as

..

If the order of the AR component of . P1 , is zero, then there will be exactly
p.

qy, rz(A) covariance matrices different from zero, and the observed process ft  willr follow an MA (qy) process. On the other hand, if qy - 0, the system of equations

reduce to

'P 
;.P

,%.%
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J--m

m

and writing

m

+ Ja10~ ziau~i

* the process will follow an AM4A (P,P) model. In the general case, ift~

* M -p the first py, covariance matrices will be given by (2.9) and (2.10) and so theyL

will not follow the AR pattern and an MA(p) component will be needed in addition to

the AR(p) linked to the pattern of (2.12). So, the required model will be AMUA (p,p).

On the other hand, if q y > P y the first qy matrices will follow the nonsystematic

structure and the process will be ARMA (py,qy).

The representation obtained for zt is not unique, as shown in the following:

Theorem 2. if zt is an observed vector time series generated by r common factors as in

(2.1) an~d which follows model (2.2), then ztcould be equally represented as

* f*CD)zt -*B with new parameters - + , + ~,where is a nonnull

matrix of rank k-r.

* Proof.

Lot m =max(p,q), then, assuming e(q + 1) =.. 8(m) -0 if m > q and

#(P +1).. *(m) 0 if m >p:

8-(B) =(-(6j + A)fl ( . e + A)?) a (D) + Aj.(B)

-'B t(B) +4 Al (B)

and the condition for the matrices 8*(P1) and **(B) to be equally acceptable as

.pJ~~~~~~~ .............. .............. . .. . . . ..... *..... . ... .
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* parameter matrices of the process is

IM t+ Alm(B)t 1(BIzt + Um(B)&

and so, the condition is

=t M (2.13)

and there must be k -r linear combination of the series that are random noise. suppose

that

!t = y + S

if we multiply for any matrix V' such that VI 0, then by Sylvester's law of nullity

rank(V) 4 k -r, and:

V~t -~'~t(2.14)

now we prove that any matrix V' that verifies (2.14) must verify (2.13), as

St t(B) 2(B)at - (~a

and if VIP 0

and, as VIC must be a white noise sequence,

=0 V i1 (2.15)

and so, if we take A. V' the proof is complete. Note that there always exist a matrix

W' such that VIP 0. We can take, for example, as first k - r row of y' a net of

*the k - r lineary independent eigenvectors of PP' that are linked to zero eigenvalues,

* and put in the leftover r positions any r vectors of the linear subspace generated by

* the first k - r rows.

An important conclusion from Theorem 1 is that the autoregressive matrices of the

multivariate observed process zt must satisfy (2.8) and so

=zk) - j,(k) (2.16)

which has the general solution

t(k) =Pi (k)P- + C(X PP) (2.17)

wee P is any generalized inverse of P that satisfy PPI adPs n

where = .P andr7is an

-10-%



- -- .-, -.-

arbitrary matrix with the only restriction that the roots of jj,( ) are on or outside

the unit circle. AS the matrix y(k) is diagonal, equation (2.16) shows that the columns

of P are sigenvectors of j8(k), with eigenvalues the diagonal elements of *y(k)-

,vever, the matrix ts() can have any rank, due to the presence of the arbitrary matrix '

C. On the other hand, according to Theorem 2, for every possible solution t,(k} there

will be a set of 8 (W) matrices that must verify restriction (2.15). For example, if ...

py 1, qy- 0, and the vector of components follows a multivariat* AR(1) process, the

system of equations to determine the parameters is obtained as a particular came of (2.10)

to (2.12) after some straightforward algebra, to be

1z +ax u - iu& "+z (2.18

- ~8 (2.19)

and any set of matrices , Jz, Is that satisfy this system is a solution of the

system. lthough there are infinite solutions, they can be characterized as follows.

First, az is given by (2.17):

and, given #ZA we have in (2.18) k(k + 1)/2 equations (because of its symmetry) plus

k2 in (2.19), that is equal to the number of unknown parameters. Furthermore, using

result (2.14)

v'l - Vat - .3 - 2 (2.21)

which implies that, although I and 0 can have any rank, their difference must have

rank no greater than the number of components in the system. Also, suppose that h is an

eigenvector of the matrix 1. - !z, then (#z - es)h k Xh, and assume that X is

nonzero. Then, if vjis any row of as

(s- 2) - -- 0 ..

and h must be orthogonal to the subspace generated by the matrix , and, therefore,

belongs to the subspace generated by P.

In usmary when building a multivariate time series model for a vector of series zt

that is driven by a number of common factors as in (2.1) it may appear that a complicated

• • • ° o • , , a . q • • . .
. . .. . . . . . . . . . .

2"•.. ,. %
W& eV ."r.Le



*

model with all kinds of dependency is needed. In particular we may finish with a model

showing feedback among all the components of the vector zt. However, the parameter

matrices in this case must satisfy many restrictions. There may be summarize as follows: , .

(1) all the autoregressive matrices will have r common sigenvectors that define the

subspace j of the factors and (2) all the I matrices must have rank equal to r and

their columns must belong to the subspace generated by P 1

2.4 A Canonical Transformation

An important problem is to find a transformation of the observed series zt that

allows us to recover the factors. To explain how to find such a transformation first, note

that, if P is any generalized inverse of P, if

!t - =-t +t e

then

It -E 1-t " _ St

second, suppose now that we apply a linear transformation K to z where J,. ,

then

Jt+ r-t !2

. .. _ -_

To recover the r factors It, B should be chosen such that SP-0. Then, the first *

r components of xt will be equal to the vector Xt of common factors plus some added

noise, and the second k : r components will be just white noise. A matrix B that

satisfies this conditions may be obtained putting as rows of B the k - r eigenvectors -.

linked to zero eigenvalues of PP'. Calling vi this eigenvectors:

-=I - 0 -PPIV

that implies,

- * - -*:.v'.= - -

and so B - V1 has the desired property. Although the selection of P- could be,".' *. "

arbitrary, it seems sensible to choose a generalized inverse that leads to canonical

X

-12- %
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variables as simple as possible. A convenient property is that the xI and x2

components of the new vector be independent, but this is not in general possible unless

EI S 1. Assming this equality, thon.

and if we choose Z" as the Noore-Penroe generalized inverse of Z, given by (Zu,)- I,

the covariance matrix will be zero and the components will be independent.

To illustrate this transformation lot us suppose that it follows an r-dimensional

AR(1) process. Then gt is U(A( 1,1) and so is any linear transformation of St.

However, the parameters of the k-dimensional at process given by . t  B it, where$

* will be

-. Me-1.

Ix" - lz
where: '4

as can be verified by direct multiplication * - (l - . o,

x I (| )',', ( ) ' ,

and using the general expression (2.20) for a. %. -b!0 e0j
in the same way, calling -0 the value of w asociated with Is " when

then, for Theorem 2, the general expression of S is

-z=0 A

and so

;I..:.>

-13-
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(p)1 '6 'oP (P'P) p'e"

-x0 V'AV

where we have used that, for (2.21) It - Ila. So, calling x - [xxt and taking

into account that the addition of MA process is a new lA proceesa "

(- yB)x it I (I - . )b~t

Eft " ?2t •;

that allows us to recover the components mixed up with noise in Xlt.

2.5. Some Simulation Results

We present here two simulations to show how the above theory can be expected to work

in practice. The results we show are representative of the many simulations we have made.

CASE 1I

A sample of 100 observations of a vector of 4 time series was generated according to the

model

1.1 .0 Yt +£
.5 -1 " .0 Y2t

" with E 1, V !t and Za (0 2 . Table Ia shows the eigenvalues of the

covariance and correlation matrices and the eigenvectors linked to the nonzero

eigenvalues. To explain these results, first note that as the two factors are

nonstationary their sample variances are much larger than the diagonal elements of £ and

so F (0) has a very similar structure to F (k) for k ; 1. This means thatz a

LZ(M) a Py(L)p. V I

Second, as the factor are completely independent and with similar variances,

F() - y L)1, where y (1) is a covariance scalar function. Then
y y y

F (A) y (I)PP, V I
y

and the eigenvalues of F (1) are, approximately, proportional to the igenvalues of t
-z

and with the same eigenvectors. The two eigenvectors of PPI linked to nonzero
..4

-14- *''"
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sigenvalues are (.42 .72 -.21 -.52) and (.37 .-39 61 .59) that are similar to

those found In the covariance matrices.

The rank of the covarianao matrices Is clearly two and so the number of factors in the

system would be estimated correctly.

a) Largest elenalue al oiaenvector .

lag 0 1 2 3 lao a 1 2 3 .

) 141.6 136.6 132.9 129.7 119.7 X 2.35 2.27 2.21 2.14 1.92

.51 .. .0 .50 .47 v 56 .56 .53 .51 .43
o .61 .30 .60 .79 .7 61 .59 .57 .55 .49 ~ f..%

t .00 -.01 -.04 -.06 -. 11 16 -.20 -.26 -.30 -.41

r -.28 -.30 -.33 -.35 -.40 r .51 -.54 -.57 -.60 -.64 ,..-'.

covariance correlation . -.

S) Becond largest

la 0 1 2 3 5 laa 0 1 2 3 5

X 36.6 35.6 30.2 23.4 24.2 ) 1.59 1.41 1.30 1.24 1.10
;;-

.2 .23 .1V• .19 .19 .18 .17 .16 v .35 .29 .27 .23 .1'
c .27 .12 .10 .09 .06 c .26 .22 .18 .14 .04
t
0 .64 .64 .63 .64 .67 o .76 .70 .60 .64 1.02
r .73 .73 .74 .75 .77 r .48 .52 .50 .63 .31

c) Third and fourth eslenvalue-

lea 0 1 2 3 4 lag 0 1 2 3 4.......

3rd .9 -.04 -.25 -.04 -.18 3rd .013 .003 -.009 .0006 -.0025-

4th .81 .07 -.04 .04 -.04 4th .04 -.0009 -.0019 -.0001 -.0025

Table lb shows the eigenvalues and eigenvectors of the first partial autocorrelation

matrices. The Identification of the rank is here less clear although (1) P(1) Is mainly

dlminated by two large eigenvalues, (2) the elgenvoctors linked to those two eigenvalues

in PI) show, roughly, the eass structure that the largest two elgenvoctor in the

%!f
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%'%

S *fa. .* V * , %, ft



covariance matrices, and (3) P(2) is sma and nearly zero. These results suggest that

the model for the oamon factors is probably AR(1) and confirm mildly the hypothesis of

two factors leading the system.

......

Partial Autocorrelation Matrices

P(I) P(2)

.97 .87 .19 .10 -.14 .21 .04*.091

.65 .27 -1.39 -. 28 -. 57 .30

.68 .65 .76 .51 .62 .60 complex

.66 -.35 -.89 -.62 .11 -.30

.50 -.65 .52 .52 -.41 -.86

Note P(A) = 0 for I > 2

Table 2 shows the eigenvalues of the estimated parameter matrices and of its

differency. Note that, as - then

11 - ".P''

and for any nonsingular matrix C

and so, any linear transformation of the columns P may appear as sigenvalues of "The

rank of the difference t - 8 is nearly 2, which confirms the existence of two factors.

Note that the two largest eigenvalues of t_ are, in this case, similar to the eLgenvalues

of the covarLance matrices.

Taking this two eigenvalues as factor loadings to build the transformation, the new ,..

vector of transformed seriet will he given by -

.74 -.58 .24 -.24
.37 -.06 -.74 .56
.42 .62 .01 -.19
.29 .36 .55 .57

and, using this transformation, the new series Lt -lt will have parameters .

". 'I.'
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;0mu -. 7 k----

b

.43 ,70 1:0 •• • 1:0 • 1
• .90 • .901 .. 99 ,

.13 . .. ...
;2 -.85:

x .52 1.0 .23 i3 + A2
* 1.1 * .18 . .1

TAMI 2

Eiqsznyalues of the Estimated Parameter Matrices

1.0 .90 -.77 .20 -.99 -.14 .29t.0914 .96 .73 .25 .06

.64 .16 .02 -.15 .27 .43 .42 .31 -1.15 .71

.97 .15 .41 .96 .58 1.41 complex .72 .46 0 .67
-.22 .73 1.03 .17 .75 .35 .50 -.42 -.02 -.43 L'.
-.67 .87 -.30 -.14 -.12 .16 .22 -.69 .29 .02

With 1 a A2  has rank equal to two. go we will obtain two random component plus the two

stationary factors contaminated with so"e white noise, as expected.

The main conclusions from this exercise are as follows (1) Although the

determination of the number of factors using the rank of the matrices may be not clear for

some matrices, putting together all the different pieces of information that can be %

obtained, the picture is normally quite clear. (2) Th. factor loadings can be obtained

with reasonable accuracy from the sigenvoctors linked to large aigenvalues of the I .

parameter matrices .

CAS2 2

The generating equation and the sample size in this second example are the same as in .

Case 1. However, now only one factor is nonstationary and it has been allowed some

correlation among both components. The factor time series model is .4, *

(Io-1.6 1 B (',t t) ( .25 1:51

Table 3a displays the eigenstructure of covariance and correlation matrices and Table 3b

that of the partial autocorrelation matrices.
..
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IF

TABILE 3a

Eigenvalues and Eigenvectors of Covariance and Correlation Matrices

a) Largest eigenvalue and its eigenvectors

Covariance Correlations

lag 0 1 2 3 4 5 0 1 2 3 4 5

X 54.10 44.63 40.66 35.87 32.46 30.74 2.98 2.2 1.9 1.6 1.4 1.3

.22 .48 .17 .15 .14 .13 .53 .43 .40 .35 .32 .28
a15 .08 .05 .02 .02 .02 .43 .25 .16 .07 .06 .04

.63 .63 .63 .63 .63 .62 .57 .61 .63 .64 .64 .64

.73 .75 .75 .76 .76 .77 .51 .61 .65 .68 .69 .71

b) Second largest eigenvalue and its eigenvector

lag 0 1 2 3 4 5 0 1 2 3 4 5

A 5.84 3.07 2.11 1.33 .84 .08 .83 .46 .33 .21 .16 .01

+.55 .49 .51 .54 .35 -.60 .31 .31 .36 .38 .23 .75
+.78 .80 .77 .77 .86 .65 .70 .77 .76 .80 .90 -.44

-.08 .03 .07 .01 -.27 .32 -.42 -.31 -.31 -.31 -.39 -.47
-.27 -.34 -.40 -.36 -.25 -.23 -.48 -.49 -.53 -.50 -.30 -. 11

c) Third and fourth eigenvectors

0 1 2 3 4 5 0 1 2 3 4 5

1.2 +.16 -. 14 .04 .07+.06i .17+.18I .15 .03 -.02 -.01 .01 -.01
+.80 -. 13 +.06 -. 16 .07-.06i .17-.18i .05 -. 005 .002 .005 .005 -.04-/

TABLE 3b

3igenvalues and Eigenvectors of the Partial Correlation Matrices

FM P(2)

.88 .46 .28 -.09 -.22 -.043 .15*.04i

.15 1.5 2 +.07 .68 -. 29

.03 2.4 1 .0 -.17 -.52 -. 23 Complex

.67 .59 .16 -.93 .17 -. 79 - .-.
82 -. 23 0 .30 -. 35 1.13

(t) 0 i > 2

e% . .. . .• ~~~~~~............... ....-..............-. "..-...-............- ,.....-.-.- . . ..... . . . .-...... ."..'
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The main conclusions of both autocovariance and autocorrelation matrices are that (1)

there are probably two comon cponente. (2) one is much more Important than the others

(3) one genms to be nonstationary taking into account the slav decreasing of the largest ..-.

eigenvalues, whereas the other seems to be stationary.

It is Important to see the differences with respect to Case 1. If ve compare Table la

with Table 3a it can be soef that the second largest sigenvalue in Table 1 decreases slowly

and the eigenvector is fairly stable even for lags as far as five. In contrast with this,

the second sigenvalue of Table 3 decreases quickly, and is clearly sero at lag five, as

shoam not only but its mall value but as well by the change of structure of its linked
osigelnvotor.•--en .' .

The partial autocorrelation matrices show the% as far as the rank of these matrices is

concerne4 the observed results can differ from theory. The only clear indication in this

case is that the general pattern of the eigenvectors linked to the two largest aigenvalues

is not in contradiction with the previous results.

Table 4 presents the aigentructuro of the estimated parameter matrices. As in the

previous simulation the final estimated model has many significant coefficients both in the

autoregressive and moving average matrices, and it eams to represent a quite ccmplex

relationship among the series. However, the matrix * " , has two larger *igenvalues

similar to those of PMI.

If we accept the hypothesis of two main factors and choose the two largest

oigenvectors of * to define the matrix of factor loadings g. the resulting parameter

matrices for the - series can be decomposed as before as the sun of two matrices,

one of which cancels in both terms. The simplified parameter matrices &rea

Ox x

shaving one nonstationary factor and a second stationary factor.

-... .::. ..
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TABLE 4 ...

1.. .8. 5 . 53 .3 . 8 .7 .
.14 1.32 .37 .65 .93 -. 67 .26 1.2 .22 .26

.0 .5+5 .3 .9-8 3a0i .7 .2 .1 -. 27
-.03 2.30 .77 -.34 .57 .03 coplex .15 1.0 1.0 -.27%
.80 -2.40 -.16 -.57 -.60 .48 .71 .28 .14 -.84

.94 -2.90 -. 48 -. 36 .67 .53 1 .77 -. 12 .08 .37

3. THE ONE FACTOR MODEL

3.1 Introduction

The one comn factor model is, on the one hand, important in its own right because it

describes the relationship of several measurements over time of the same dynamic

variable. On the other hand, this situation is going to appear approximately in the

multifactor situation when one of the factors has much greater variance, and for this

reason is more important than the others.I._
We will assume in this section that in the general representation (1.1) P is now a

k x I vector. We will concentrate here in the case that yt follows an AR(1) process

and will analyze the behavior of the system as the parameter *y of Yt approaches the

unit value.

With this set up, every component zit of zt will follow an ARMA (1,1) model with

the same parameter *y, and with parameters e that, as can be seen equating moments p
yi

*must verify:
m 

-62y - 0( + I + + *y - 0 (3.1)

222Pia 2"..
where 1A= "- being Pi the ith component of P, a the variance of the noise in

22

2the model for yt and the variance of the ith component of the measurement error

vector C . It can readily be seen from (3.1) that the parameter 8 in each series
t i

depends on ji" If i which means that the measurement error can be ignored, ei

tends towards zero, and if 0, + 0 everything is dominated by the noise and 0 ,

which means that this component will be white noise.

-20-
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3.2 The Covariance and Correlation Matrices

Calling yy(k) to the autocovariance coefficient of order k in series Yt.

r (o) , Ppy (0) + .
=3 -- y we

r (k) PPY (k) k -'0 1
3 -- y

and for k P 1, (1) all the covariance matrices will he symmetrict (2) all will have the

rank equal to ones (3) all will have an elgenvector equal to P linked to the nonzero

eigenvalust (4) all nonzero eigenvalues will be proportional to the autocovariance or

autocorrelation function of yt"

So, in the special case in which yt will follow an AR(1) the nonzero eigenvaluea

of the covariance matrices must decrease exponentially.

The partial autocorrelation matrices can be obtained from equations (2.5) and (2.6).

The first term is

P(i) = y~Y (0)(1 + ay (0))' p 'Z
y y y --

where now a = P'Z'P, and so

ay (0)

= I y layy() -

y
that shows clearly that if the signal to noise ratio ay (0) is much greater than 1, the

Y

first partial autocorrelation matrix will have an eigenvector P linked to the eigenvalue

. ote that in all cases p will be an eigenvector of P(1) to difference from the
Y

multifector situation.

For the others terms, using (2.5)

ft !(Y () -Y fi i)y Cj)P'A- (i,j,Jt)P)P,,, CM.
Si-l-i y

where

100= (Yy(O)KI' + -+ it Yy(i)y()'A Ci,j)')"

calling

-21-
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1d Y -y (0)- j ) y( i)y y (j)P'A'(i,JL)P (3.2).

L= -1 ::;:-,..

( -li)i y (A - i)y (j).3) "i(3"3)

L y.i- .( 3
i-1 -- .

then.": , ~P() - f '~d,p' + i.:)". .

and using the expression for the inverse of the sum of two matrices one of them being

nonsingular (see Section 2)
(J) , I fA )pp'g .-1 (3,4) .. _ -

fL- -.

and so P(A) will have an eigenvector equal to P vith eigenvalue af. + ad,) it

can be seen from (3.2) that, again, if the signal to noise ratio is large, the eigenvalue

linked to the P eigenvector of l(t) will follow the partial autocorrelation function of

the component Yt"

In particular, if Yt follows an AR(I), EC() will be near zero for A > I if the

signal to noise ratio is large. Otherwise, P(,) will be different from zero and will

have a nonzero eigenvalue linked to P.

3.3 The Parameter Matrices

The parameter matrices of the process can be obtained equating the representation of

the covariance matrices implied by the one factor model to the covariance matrices for an

AP4MA (1,1) vector process. Then

- .,y (o) + E- r. + t-. e, + e , (3.5) L
r, - pp'y (1) - Lai 1 1 ' (3.6)

r . (k) - r _' k , 2 (3.7)
!k -- y -k-,-,:*.

where , 6 and Ju are the matrices that define the observed vector process zt, and we

use y and a
2  

to represent the parameters of the AR1) model for the common factor
y a

Yt" Using (3.7) for k N 2 it is readily seen that

-22-
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(3.6)

and so y must be an eigenvalue of f linked to the elgenvector p. The general

solution of (3.0) ia (see Rao and Mitre (1971)) -. 4-'

(pIP) 1_pp + I 3.9)

where C Is any arbitrary matrix with the only restrictions that the eigenvalues of * '

must be on or inside the unit circle. Eliminating the covariances from (3.3) and (3.6)t

-u a + 'o * IAU' - (3.10)

11 * log (3.11)

Equations (3.8), (3.10) and (3.11) define the restrictions which must be obeyed by the

parameters of the system. on the whole, the system has not an unique solution because

there are more unknowns than equations. Nowver, once is assumed fixed according to

(3.9) the parameters mtrices 2 and are determined by (3.10) and (3.11). it can be

verified that the solution of these equations is-

S- - y 1 P (3.12)

where f is given by (3.9), b- P' e P and A verifies,

b 2 - (ba: + #2
bA2  a ~o 2- )-~ (3.14)a ya

and corresponds to the solution with 6 having its *igenvalues on or inside the unit

, 02circle. Note that if # + 0 A +a' as expected. Equations (3.9), (3.12) and (3.13)

s rise the relevant properties of the matrices of the process, (1) t may have any
rank but must have P as an sigenvector with eigenvalue * (2) f may have any rank

y
but again must have P as an eigenvector with *igenvalue:

1 + Ab

and using (3.14), the expression of X9 as a function of the parameters of the common

factor is"

-23-. 4
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As- X(a+ + 1) + -0 (3.15)

and if we compared (3.15) to (3.1) Is clear that X will be similar to the univariate

parameter of the series, although smallerl (3) - smust have rank equal to one, and

will be the eigenvector linked to its nonzero eigenvalueu (4) The matrix will be, in

general, a full rank matrix.

3.4 The Canonical Transformation

In the one factor case, the canonical transformation is the matrix of eigenvectors of

PP'. Calling 61 this matrix, the covariances of the transformed process itN= will

be

-, O3(kfl

and so

r (k)..jk i k )o

-x

0'

-x y I 2 o

r () - Nxz1 + HEP IY

2

2 2

XdE tM EM



-XE a2 2

r ( 0 ) - . + a t a -

,-

,0* t,, 0k I
;.% 

--..
where lk-I in the unit matrix of dimension k I and is are the row@ of K, that in, ,

-. the sigenvectors of PP. This equation shows that the covarinces between the factors and .'
the eries are proportional to the sigenvalues of PPI.--

-25-
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4.* THlE FACTOR 140DEL WITH DEPMIUDE FACTORS

4.1 Formulation

If we remove the restriction that the parameter matrices of the AIUA model for the

factors are diagonal, some uniqueness conditions are needed to determine the model. One .

suitable normalization is to impose 'P 1 , that means that of all the C matricos:

-1
Et a t t:-1 -1 .;.

we choose C such as (C1)'P'Pc - I. Other possible selections are to choose to

diagonalize some of the parameter matrices of the factor model. For instance, if

follow a multivariate AR(1), C could be chosen to diagonalize I which leads back to

the uncoupled case. However, in the general case in which Yt follows a general AlKA

(py,qy) model, the condition that C has to diagonalize any particular parameter matrix

is arbitrary. Thus, it seems more natural to link C to the properties of the factor

loading matrix.

4.2 Properties of the model

Table 4.1 summarizes the differences between the basic properties of the uncouple

factors and the couple or dependent factors model. The main difference arises related to

the sigenvectors of the covariance and autoregressive parameter matrices that are no longer F.%

columns of the factor loading matrix. Equations (2.4) and (2.16) do hold in this case but

the conclusions we have to draw from them are different. For instance, starting with (2.4)

and assuming that ry(k) = U D U
1  

where D is diagonal, is clear that r (k) has the . . -y -k-k"k k -Z

same eigenvalues than r (k) but with eigenvectors P ~k V, where the columns of V
-y k

belongs to the null space of PP'. To see this write

2k 2I 2 k
1,(k) [P - k 1

that shows clearly the eigenstructure of r (k). Of course if r (k) is diagonal Uk --z -y U. I :

and we obtain the uncoupled case.

-26-
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As for the autoreressive parameter matrices, the condition Is

JZWJ - Ity(k)

and assuming that (k) has lineary independent eigenvectors and writing

.. ,:.. _J.

1y"k) kk where ik is diagonal and contains the .igenvalues of j Mk. F

TABLE4.
L

Property uncouple Factors Couple Factors

rank (z(k))n ri k 1 Yes Yes

r(k) symmetric Yes No

sigenvectors of F (k) columns of Yes no
Us

eigenvalues of r (k) eigenvalues of r (k) Yes Yes

rank (P(I)) - r Yes Yes

st  AM (Ps - py, qz max(pyqy)) Yes Yes

rank (I) - r i 3 1 Yes Yes

eigenvalues of tz(k) are eigenvalues of *y(k) Yes Yes

eigsnvectors of _2 (k) are eigenvectors of -zCk) yes No

that shows that the eigenvalues of ty(k) are eigenvalues of Jz(k) as well, with

eigenvectors ik"

Tobuild the canonical transformation we need to determine the null space of PP'.

Suppose that #l is the matrix of gigenvectora of the first autoregressive parameter

matrices of the observed series gt. Then, r columns of R are , whereas the

other k - r columns are arbitrary. We can partition H and R as

HEPW I f~
- --1 1 - 1

-1

and obtain and I. The determination of these columns can be made because (a)

r is the rank of r (k), P(1) and j, and can be determined; (b) these columns are
.3

-27-
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linked to the eigenvalues of ty(1) that are approximately those of P(I). Then as

(P- l)(ff(PW ll)CVP'i 
) 
"PP.

the null space of (PW m)(1CP) in the same as that of ul and V can be obtained

taking the eigenvectors linked to zero eigenvalues of this matrix. The transformation

will produce, as the uncoupled case, a decomposition of the St  vector into two

components: The first will contain the factors mixed up with noise, and the second

component will be a vector of white noise.fly I -t
!t-Mt

An interesting property of the transformation is that the components obtain in Slt

will be, in practice, weekly related. For example if yt follows an ARM1), fLXt will

follow an AR(M) process too, but with a diagonal autoregressive parameter matrix.

-28-
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5. UP6Z PPACTIChL CMUUWS ON THS APPICATIOII Of TEX 1330

There are three Main decisions that have to be taken to apply the following theory to

a real data set of time series. Pinet, the number of factor has to be identifiedl

second,the factor loading matrix & has to be estimated, and third, the deCoupling

transformation N has to be built. We will briefly comment on these subjects on the basis

of our experience.

To identify the number of factors we havs four different tools at our disposals The

covariance mtrices, the correlation matrices, the partial autocorrelation matrices and the

*paramter matrices. We have shown that the rank of all theme matrices should be equal

to the number of common factors driving the system.

However, when the variance of one of the factors is very large compared to the

variance of all the other factors, the identification of the dimension of the factor space

using the rank of the covariance and correlation matrices can be misleading. suppose for

instance that the factors follow an ARM 1 model. Then if

- )X at

the covariance of itwill be

r (o) r (i, + z

ir ()-r (z-)' ~

Opoethat E is diagonal.* Then, using the spectral deco~mosition of Y)

r

where isIare the eigenvalues of LY(O) and v~ its sigenvectors. As LY(O) is %

diagonal, vIa are also the variance of the components, and if the variance of the first

factor is much larger than the variance of the others

and In general

ayk '"l,k21,k! ,k(51

where i i the largest eigenvalue and its associated *igenvoctor. Then

-. I. % -6 J.
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r (k) h la~ h'~h, (k O I)

where h, = P J. So, all the covariance matrices will be dominated by a large

eigenvalue and will have rank equal to one. In particular, if all the components are

nonstationary and y - I, then hl,0 = hl,k for all k and the covariance matrices will

display the structure we have obtained for the one factor model.

However, as the columns of P are eigenvectors of Jz whatever the variance of the

factors, if =y - I, J. will still have at least r-roots on the unit circle and at

least r eigenvalues equal to one, linked to the P vectors. For this reason the

identification of the number of factors looking only at the rank of the covariance matrices

could be misleading. Note that this problem is not resolved by looking at the correlation

matrices because, calling R (k) the autocorrelation matrix of order k.

Rz(k) , Diag(rz(0))-/2r(k)Diag(Ez(0))-1/2

and using (5.1)

- . ,k l,k -l' --k

where

Diag(rz(0)) - 2 -,k

and the same situation will appear.

The rank of the nonzero partial autocorrelation matrices can also be misleading when

r (0) is almost singular. Then the precision of the computation of these matrices iS-Z

very low and the determination of how many roots of the partial autocorrelation matrix can

be considered equal to zero is not easy. As a general rule, the simulations we have made

have shown that estimated eigenvalues an large as .5 can appear for theoretically zero

values in the partial autocorrelation matrices when the variance of the noise is small

compared to the variance of the signal.

The rank of the I matrices seems to be the safest way to determine the number of

factors. When there is disagreement between the three features we have analyzed, a

conservative strategy is to start assuming a small number of factors and proceed

iteratively, building the components and analyzing the noise for further structure.
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The faotor loading matrix s should be determined from the oigenvectora of the

maximm likelihood estimator of the autoregreesive parameter matrix J. only in tAe one

factor came the column I could be obtained directly from the covariance or partial

autocorrelation matrices. A wll known rule in matrix computation (see Sewart (1973)) is

that the eigenvectors of a matrix are well-conditioned only when the matrix has distinct .

and well-separated eiguivalues, whereas if the matrix has repeated or clustered *igmnvalue-

the estimation of its eigenvectors may be ill-conditioned. This mans that, on the one t'---

hand, we can expect a good agreement in the one factor case saong the different estimation*

that we have of the vector of factor loadings, on the other hand, when we have several

nonstationary factors, we have to expect this same number of unit roots in the "

autoregressive matrix and the estimation of the sigenvectors is not expected to be very

accurate. For this reason, even if the factors are independent, we can finish with factors

that have small correlation or with final noise processes that are not exactly white noise

processes.,'',

-

,,,. o;~.
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6. NIANPLZS

6.1 The Series of Wheat Prices in Castillo

Figure I shows the series of the price of wheat in five provinces of Castillia, Spain

from July 1980 to December 1890. Therse provinces are Avila, Palencia, Segovia, Valladolid

and Zamora. The source of the data is Sanchez-Albornoz (1975) and Pena and Sfinche:i Albornox (1953) have studied ese of these series during the second half of the X11th

century, pointing out their lack of seasonality.

The analysis that follows is made vith the series in logs, although the conclusion are

not depending on the particular transformation used.

Table 5 shows the univariats model for the five series. These models are broadly

consistent with the hypothesis of some common factors following an ARC I) model. Table 6

displays the eigenvalues and eiqenvector. of the covariance matrices up to lag 6. There is

a strong eigenvalue that decreases slowly linked to a fairly stable sigenvector. The

second eigenvalue is rather small and the sigenvector is not completely stable. Finally,

the other three sigenvotors are practically zero. Then, it seems there are at least one

important coemon component and perhaps a second one although such loe important than the

first.
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Univariate model for the series

V In Avila -(a + .118) at  ; 0.039 Q(23) - 32.8

(1.30) ,.

V In Palencia - (1 + .18B) at a e - 0.030 Q(23) -24

(2.02)

V In Segovia - (1 - .16B) at 0 - 0.057 Q(23) - 16a

(1. 77)

V In Valladolid - (1 + .153) at  - 0.031 Q(23) - 36.9

(1.70)

(1 - .153 - .20B2) V In Valladolid - at a - 0.029 Q(23) - 34.6

(1.70) (2.30) ~

V In Zamora - 01 - .16B) a - .049 Q(23) - 23.9

(1.84)

The values under the estimated parameters are t-values. Q(P) is the statistics of Ljung- pow-

Box with £ degrees of freedom. X23 (0,051 - 35.2.
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TASLI 6

I. . .

3ienvallu* X and ZicenveCtor_ v of Covariance Matrices

01ro:~ .19,
10o .20 O. lO. io

.36 .27 .80 .33 .24

.43 -.14 .06 -.80 .40

.50 .57 -. 58 .22 .19

.44 .10 .12 -.21 -. 86

.49 -.76 -.15 .41 .05

a) Largest eigenvector and elJgenvalue

1g 1 2 3 4 5 6

), 777 73S 693 647 604 560

.35 .35 .34 .33 .32 .32

.44 .44 .45 .45 .45 .45

v .49 .49 .49 .47 .47 .46

.44 .44 .44 .44 .43 .43

S.49 .50 .51 .52 .53 .55

b) second largest eigenvector and eigenvalue

U..-..

laa 1 2 3 4 S 6

, 12 13 11 8 5 7

.65 .40 .08 .21 .38 .18

-.18 -. 17 .01 -.09 .26 .23

v .28 .46 .1 .31 .05 .34.

.06 .16 .04 .16 .10 .43
-. 69 -.77 -.31 -.57 -.68 -1.15

c) Leftover eigenvaluee

laa 1 2 3 4 5 6

3rd 0a 1 4 3 5 1 j
4th 5 4 4 3 4 2Sth 5 4 4 1 0 2 ---

notes All the elgenvalues have been multiplied by 104.
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Table 7 shows the eigenvalues and eigenvectors of the first two partial correlation

matrices. The two main eigenvalues of the covariance matrices appear again linked to the

largest and third eigenvalues of PM1) and, less clearly, in the two negative elements

of P(2). Table 8 shows the pattern of significant coefficients in the exact maximum

likelihood estimation of the parameters of an ANNA (1,1). It can he concluded that there

is a very complex relationship among the series with all kinds of feedback present. The

eigenvalues of the matrices f, e and t - are shown in Table 9. The five eigenvalues

of _ are close to the unit circle, what can wrongly lead to the conclusion that there are

five nonstationary factors. However, the rank of - 8 is nearly two, leading to the

conclusion that there are 2 factors in the system. The eigenvectora linked to these main

eigenvalues are again very close to the previous eigenvectors of the covariance and partial

correlation matrices, and these two eigenvectors appear approximately in the t and 8

matrices, as shown.

In summary, there is strong evidence of at least one, and probably two, common factors

driving the system. The first is linked to an eigenvalue that is broadly speaking a mean

of the series. The second is roughly the ratio among Avila and Zamora. This result makes

sense because this second factor affects the two more western provinces that are closer to

the Portugal border.

TABLE 7

Zigenstructure of the Partial Correlation Matrices

.95 .63 .69 .41 .04 -.47 -.09 .41 .17 .20

.37 .69 -.94 .51 .02 .58 .77 .04 .23 .20

.49 -. 16 2.79 -. 16 .05 .32 -.23 .51 -.36 -.77

.53 -.05 1.26 -.20 -.93 .48 -.59 -. 53 .95 .43

.48 -.31 1.96 -. 16 .27 .38 -.05 -.34 -.37 -. 14

.57 -. 74 4.94 .90 -. 24 .43 .16 .67 .38 1.40

P(M) P(2)

-36-

•~ % .. ..- ,
.,:

- ")4.



• TI II. 8-. .

TA5LZ 8

Significant Values in the Parameter Matrices

+ * - 4- * +. - - . +,1

* 4. + + . . . . . . ..,
+r +

* . . +. 4.4.- . . .

TAPLZ 9

rigenvalpes of the Parameter Matrices and Main 3igenvector

.99( *994.*O9 .98-.O81 .844..141 .84-.141

S -.5 1(a) .5 1 2a) .98+. .98-.18 .85

* 1.46 ( 6 )  .34(2s) .14 -.05+.031 -.05-.03i

We have chosen the eigenvectors (.37 .49 .53 .48 .57) and (.69 0 0 0 -.74)

to build the transformation. Any other election does not seem to change the results. With

this two generators, the matrix I turns out to be

.52 .07 -.51 -.48 .49
26 -.88 .09 .31 .24

N - .04 -.15 .70 -.70 .03
.41 .41 .45 .41 .38
.74 .07 .07 .07 -.66

The resulting five series are plotted in Figure 2. The new Ix and 8 for the

transformed x series obtained transforming the. parameter matrices of z turn out to be -

-. ,
-,37- -"
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* . . . . . .96 .
-. . .. . 98 -. 19 • •

SM
"  • + .16 .84

* " -. 71 :94 .18 -. 30 .82 -. 24 .
*. .. . .92 • .2S -. 27

. .. . .. 90 .19 .15
-1 . . . .. .93 -. 23

0 = NO W , + .16 1.0
x . -.55 * .12 IL' -:12

.2. .20 :50 • .33 -. 19

where we have used a dot to indicate a parameter value below .1. This decomposition shown

that there is a matrix A of rank equal to three that can be subtracted from both sides. p.-

All the rows of this matrix are orthogonal to the vectors (00010) and (00001) and so,

according to Theorem 2, could be subtracted to obtain three independent sequences of white

noise plus 2 factors. The first factor is, according to the fourth raw of M, a mean of

all the series and describes the general trend of the market. The second factor is

stationary and affects to the most westerly provinces, Avila and Zamora, and although

stationary seems to have an ARMA (1,1) structure. The factors are not completely

uncorrelated and a weak relationship seems to exits between them.

To check all these results we have built a model for the factors from scratch. Table
N?"

10 shows the parameters of the model and Table 11 the correlation and partial correlations

of the residual. The first two component of the decomposition are stationary AR(1) process

uncorrelated at all lags and the third is white noise. The fourth is the nonstationary

component that describes the general evolution of the market and the fourth is the

differential effect of the occidental provinces. This factor turns out to be uncorrelated

with the main trend.

The results are sensible and confirms that the five series are driven by a main factor

that explains their nonstationary behavior. The strongest correlation of the main factor

and the five series is with Valladolid r - .99 that was the greatest producer of wheat in

Castillia and is consistent with the expected behavior "a priori".
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TABLE 10

(.06)

* . . . .ex

-. 43 * -. 74 .95 .. . . -. 50 .

(.14) (.12) (.02) (.06)

* . .. 76 . . .

(.07)

TABLE I1 I

1 10.34
.09 1

-. 45 .12 1 4 ~ 45
R. .00 .49 .28 1 10 E - -4.40 .76 9.21

-. 26 -.04 .08 .24 1 .08 5.21 4.34 25.25
2.53 -. 25 .71 3.79 9.56

Parameters of the transformed series and correlation among residual*.

As a further check of the methodology we have analyzed the wheat price series of three

provinces of different economic behavior in which a unique coinon factor is not expected.

The provinces we have chosen are La Coruna, that is not wheat producer and is the North of

Spain, Zaragoza, that although producer of wheat supplied to Aragon and Cataluna, and

Valladolid again as representative of Castillia. Table 12 displays the eigenvalues of the

covariance matrices and although there is a large eigenvalue linked to the general mean,

the other two eigenvalues are fairly stable. The partial autocorrelation coefficients show

3 strong roots and the estimation of the model in Table 13 shows that a- has rank

three and it is not possible to reduce the dimension of the system. There are three

factors, and the three are nonstationary as expected.
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TASLE 12

Eigenvalues and rigenvectors of the Covariance
matrices of Ia Coruna, Valladollid and Zaragoza 0

lag I d. 3 4 5 6 1 2 3 4 5 6 -'''

486 479 459 441 422 402 x 50 47 43 43 41 39, 2

.42 .43 .44 .46 .47 .48 .64 .64 .66 .66 .68 .66

.49 .47 .45 .43 .40 .38 -.75 -.75 -.74 -.74 -.73 -.75 .

.76 .77 .78 .78 .79 .79 .18 .19 .19 .20 .20 .22

1 2 3 4 5 6

A 9 7 4 5 4 3
.3

.67 .68 .69 .68 .68 .68

.39 .37 .37 .36 .37 .37

-.63 -.62 -.63 -.63 -.63 -.63

TAML 13

Bigenvalues of the Parameter Matrices of the Model
for La Coruna, Valladolid and Zaragoza

.93 1 .93 .21 .14 -.14 1 .92 .73

1 .7 8 -4.5 1 1.71 .38 -. 6 -1.5 1

- 0 .70 0 j "j 0 .7 .79 t'2 1 2 0
0 .71 1.41 0 -.62 .64 0 1.0 01

6.2 The Series of Stock Prices Indexes

The three series studied are monthly averages of the Dow Jones Index of 30 Industrial

Stocks (DJ Series), the bt dA4rd and Poor Intustrial Stock Index (ID series), that includes

400 stocks, and the Standard and Poor Stock rrice Index (SP series) that includes 500

companies chosen from all sectors of the U.S. economy. The sample period is from January

1966 to DeceIber 1981. Figure 3 shows the evolution of the three series that have been

standarized removing their means and dividing by their standard deviation to show the three

in a common scale. Table 4 shows the unlvariate models.

We will report here the analysis on the logarithm of the series although the

conclusion are robust to the scale of measurement. Table 15 displays the *igenstructure of _

the covariance matrices and, as the spread of Dow-Jones io quite different from the other

-41-
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two, the eiganvae and eignvatrs of the orreolation matrices are also presented.Bt

set of metric"slu hoeo Vey stable eigenveotors. fho eIgenveotor linked to the

greatest eigenal8ue Indicas that the fiLrst factcor is a weighted mean of the thre

owl"s. Thump It can be Interpreted am the general trond of the stock market. The second

factor sems to take into account the behavior Of large indlustri1al corporations (as

measured by the Dw Jones Index) with respect to the rest of the market. The third

elgenvalue Is very mall and, aoeequently, the system sems to be driven by two factors.

The third elgenvalue represents a constant relationship among the three series in the whole

sample period. 2his relationship is

•66 An !. .09 An I.

and in a weighted combination of the performance of the industrial sector (defined by LI

and LD) with respect to the whole of the market (LS). The fact that the eiganvalue linked

to this oigenveotor is equal to zero san that this relationship has been stable in the

stock market.

Identification suggests a multivariate Mi (1,1) model for the vector of the three

indemes. When fitted by maximum likelihood, and after deleting the nonsignificant

perameters, model a of Table 16 in obtained. the I parameter matrix has the remarkeable

property that rows one and two are nearly identical and the rank of S is two. Actually,

the ft matrix could be decomposed as the addition of

TAM 14

Unvariate Models for stocks Series

model as Q(35)

"VLI (1 + .268) Rt .251 33.5

WZ - (1+ .46S)a .262 34.5
(.7)______ _____

( +1 .22S) t .377 31.9(1.07) '

LI a An of Industrial Kandard and Poor 2ndext LI - An of Standard and Poor Index,

,D - In of Cw Jnmes Index. Q(t) io the Tim-Do statistic with A degrees of freedom.
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TABL 15

tigenvalues of Covariances and Correlation Matrices
of the Series Z- (LI,LS,LD) K.

a) Covariance (eigenvalues x 10 4 ) '4_.

Largest Eigenvalue Second Eigenvalue

lag 0 1 2 3 4 5 lag 0 1 2 3 4 5

x 440 420 389 363 330 299 A 30 32 29 26 23 20

.68 .68 .68 .69 .69 .70 .33 .33 .32 .30 .30 .30

.64 .64 .64 .69 .66 .65 .19 .18 .17 .17 .15 .12

.37 .37 .36 .34 .35 .30 -.92 -. 92 -.93 -.94 -.94 -.95

b) Correlations

lam 0 1 2 3 4 5 lag 0 1 2 3 4 5
2.66 2.53 2.33 2.15 1.93 1.72 A .34 .30 .27 .25 .22 .19

.60 .60 .60 .61 .63 .63 -.37 -.41 -.40 -.39 -.38 -.37

.60 .60 .60 .61 33 .64 -.37 -.33 -.31 -. 30 -.28 -.26

.54 .53 .52 .50 .47 .44 .85 .85 .86 .87 .88 .89

c) Third eienvalue

Covariances (eigenvalues x 103 Correlations

lag 0 1 2 3 4 5 laai 0 1 2 3 4 5
0 2 2 3 1 a A 1.009 .009 .009 .004 .004 .004

.66 .66 .66 .66 .67 .68 .68 .68 .68 .68 .69

-.75 -.75 -.75 -.75 -.75 -.74 -.73 -.73 -.73 -.73 -.73 -.72
.09 .09 .08 .08 .06 .06 .06 .06 .05 .06 .04

p:."

F.
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TABLE 16

a) Model A

4e Z;~ X 104:'

1 2.52 -3.80 .92 u

(.001) (.09) (.06) (.13) 13.12

1 1 . 2.68 -3.96 .93 12.84 12.65
(.001) (.10) (.04) (.03) 12.39 12.20 12.94

• . 1 2.56 -3.44 .55
(.001) (.17) (-.17) (.14)

b) Nodel "
-. 16 • . -

(.05) 12.99
se -. 14 12.80 12.60

(.05)
23 -.36 12.42 12.22 13.05

(.09) (.07)

c) Model C

-. 23

.04 12.99
1 -. 04 -.221 12.69 12.47

2 11.26 12.05 12.86• ~~-.21 ....

(.04)

a matrix similar to the 0 matrix of model B (see Table 16B) plus a matrix with the three

rows equal to (2.7 -3.8 .92). Calling this rank one matrix A, this implies

At 0

That means that a noise sequence can be expressed as a linear combination of the other

two.

An interesting fact is that the vector that. defines this combination is,

approximately, proportional to the eigenvalue linked to the smallest eigenvalue in the

covariance and autocorrelation matrices. Thus, the same restriction affects to both the

noises and the vector of series. Calling m' this coamon vector we have

t 0 .W-.'

For these results to be in agreement with the model for the series, as

-45-
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m'Vz m' (I - OB)at

then

g!ftat 0

vhich means that 6 mst be equal to kj, where k is a scalar. The matrix of model

B suggest that this can be a reasonable model. The maximum likelihood estimation vith the ..

restriction that the matrix & be diagonal leads to model C. Note that the fit of the

model as measured by the diagonal elements of _ ham not worsened, and the diagnostic

checks does not indicate any problems in the estimated residuals. The three diagonal

elements of 6 in model C are, approximately, equal and so, the final model for the series

is:

Vat (I + .2 28)a •

As the * matrix is the identity it does not provide information about eigenvectors

in this case. However, we noticed that (a) the model for the common factors must be

Vyt - a t because the eigenvaluem of #, that are all equal to one, must match the

" eigenvalues of the factors. (b) In this particular case the factors are undetermined

because any orthogonal transformation of yt will produce exactly the same model for the

factors, (c) we can choose the orthogonal transformation in order to result in orthogonal

columns in the vector t, (d) If we do that, the columns of I will be eigenvectors of

the covariance matrices.

Choosing this representation, we first notice that the two main eigenvectors of the %

covariance matrices (Table 15) are orthogonal. Then taking these sigenvectors as

generators of the transformation the matrix

.68 .64 .37

.32 .18 .92

+.66 -.75 +.08

This produces three new aggregates xa -y. The first could represent the general

tendency of the stock market. The second could be interpreted as the behavior of large

corporation versus the rest of the market. The third is the ratio of the industrial sector

versus the general market. This third component is approximately the linear combination of
*% *%
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the series that has a variance very close to sere. These three components are shown in

Figure 4. The variance of the first in the largest eigenvalue of . (.0440) the variance

of the second less than 7% of the first (.0030) and the third has a variance that in

0,00231 of the variance of the mean factor and could be considered nearly constant.

However, when we apply the transformation 3t to the matrices i and 1, since cq

f" Xand -. 221 these parameter matrices do not change. Then, the vector it

follows the same madel as t which means that the third component of Nt  although

almost zero, i. a nonstationary factor. This factor is displayed in Figure 5 In a very

augmented scale and in fact it is clear that it is nonstationary. it increases slowly but

steadily until 1974. suggesting that the stock prices of industrial corporations were

gaining against the general market until 1974. Then, this tendency broke down and industry

began loosing steadily position against the general market. This component may indicate a 
1.0

relative deterioration of U.S. industry after the 74 oil crisis.

The conclusion from this example in that we need to carry out the complete analysis to

obtain a clear picture of the ystem. As we stressed in section 5, if the variance of one

factor is very small in relation to all the others, this factor may e overlooked in the

study of the rank of the covariance and partial autooorrelation matrices. However, it will

show up in the final mltivariate ARMNA model and will be easily detected when applying the

transformation to recover the factors.
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7. CiPAR SO WITH ONNZ3 APP.OACSZ8

Quenoulli (1957) suggested to use the eigenvectors and elgenvalue of u, LO() to

build transformations that allow simpler interpretation of the fitted model and/or to

identify the possible number of factors. We now revise briefly the properties of thoe

transformations.

Starting with the simplest case, the one factor model it has been shown that both

matrices have the representation

kin, + le

and so (1) procedures based on either the rank or the eigenvalues of l will be similar

to those based on these same properties of r=(z), (2) both matrices are full rank

matrices if E is not degenerate; (3) the eigenvectors of either 1u or Ls(O) will

only coincide with those of PP' when - o. It turns out then that in the one factor

case only when E. a a 2 and a2is very small compared to 'i0(y) (see Section 5)CC

principal components based on either r (0) or i will obtain the same results as the

method suggested in this paper.

In the mltifactor situation, the eigenvectors of O() and A needn't be the same

but the above considerations still apply. As r S0) - Pr (0)=" + E principal components

in the original data will depend on the measurement error matrix and the s is true .,

for the matrix Lu

box and Tiao (1977) suggested the use of the eigenvectors of the matrix

2 ' 1 (Ol=(O) (7.1)

where it is assumed that at follows an autoregressive process = -z- + S, and

p
EL(0) - AM I,,(l')

and they proved that a transformation based on the eigenvectors of Q produces a set of

new canonical variables that are ordered from least to most predictable. To compare this

canonical transformation wih the one recommended in this paper let us assume first, that

the model equation for the factors is AR(M) and second, that the model identified and

-- so-
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fitted for the observed series is AR( 1). Ohen the estimation of the autoregressive

" parameter 68, will be

)r I~1~ (o) - PriC)zug,(I l +I

and using the expression for the first partial autoregroession matrix obtained in (2.6), and

inserting it into (7.1),

' if we now apply that

Lz (j + MOY'~ + WOWL£'YI

where

the general expression for Q ist

9 C r EoI' 1 y(o) (I + Ar (0))-A o z

and using the wel known expression for the inversion of the sm of two matrices one of

"" them being nonsingular,

-" -'r .. j, -,. q~
1.IS Z'(j + ,(0)h)'~0II'I,~0 + M()

, and, after m manipulations and taking into account that

Z- + W"IN - (z + 
"

r.

we finally obtain

9 - I'( + ,y(o))",11r (o)(1 + Ar.())-' ,,(o)*Z' (7.2)

Then, if ' s such that , then

ay 2PVI -09

and so the columns of V are sigenvectorm of g linked to the sero eigenvalues of 2.

lowever, expMession (7.2) show that neither n nor i when i an orthogonal matrix,

will be In general eigenvectorm of 2 and so the canonical transformation will fail to

recuperate the factors. The reason Is that the linear combinations of greater

predictability depends not only on the factors, but on the variance of the signal as vel.

oS'1-
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in the one factor model, equation (7.2) reduces to

with

2 2Q 2 ..

(1 + ay0 (y))

and a = p as before. Then Eep is the vector linked to the nonzero eigenvalue of

that is ak. As y approaches the unity, if ayo(y) is much greater than one, Q

will approach unity too, in agreement with Dox and Tiao (197) theorem. In addition, the

eigenvalues linked to zero eigenvectors of 2 must be linear combinations of those of

PP' and, calling the matrix whose rows are the eigenvectore of g, - " ,

Therefore both procedures will come out with a different component plus k - I white

noise. In the canonical transformation this single component depends on and on

whereas the factor analysis decomposition depends only on P.
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So. CONCLUSION

It has been shown that the multivariate time series model for an observed vector of

time series may appear very complicated, when in fact a simple representation using a small

set of comon factor is adequate. Besides, failing to notice this structure can be

dangerous, because the interpretation of the internal dynamic that we have to draw from the %

model will be completely different in both cases.

Unlike in the factor analysis of static variables, the restrictions that the presence

of common factors put on the covariance, correlation, partial autocorrelation and parameter

matrices make the identification of the number of factors and the estimation of the factor

loading matrix relatively easy.

Box and Tiao (1977) and Tiao and Box (1981) recmmend the computation of lgenvalue-

and eigenvoctora of different matrices an a useful source of valuable information. it has

been shown the relationship between this eigenvalues and sigenvectors in the context of a

comon number of factors and how a transformation can be built to obtain a parsimonious and

intelligible representation of the observed vector of time series.

... 
I.
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